Skip to content

Mass Reconstruction

Mass reconstruction reconstructs PM2.5 mass from chemical composition to verify the completeness and closure of chemical analysis.

Major Components

Secondary Inorganic Aerosol (SIA)

Ammonium Sulfate (AS)

\[(NH_4)_2SO_4 = 1.375 \times SO_4^{2-}\]

Ammonium Nitrate (AN)

\[NH_4NO_3 = 1.29 \times NO_3^{-}\]

Ammonium Status Determination

Calculate ion balance:

\[R = \frac{[NH_4^+]}{[SO_4^{2-}]/48 \times 2 + [NO_3^-]/62}\]
R Value Status Description
>1.1 Excess NH4+ excess, possibly NH4Cl present
0.9-1.1 Balance Near neutral
<0.9 Deficiency NH4+ deficient, acidic aerosol

Organic Matter (OM)

\[OM = OC \times f_{OM/OC}\]
Environment Type \(f_{OM/OC}\) Description
Urban fresh 1.4-1.6 Primary organic matter dominated
Suburban aged 1.6-1.8 Mixed sources
Background 1.8-2.2 Secondary organic matter dominated

Elemental Carbon (EC)

Use measured value directly:

\[EC = EC_{measured}\]

Soil Dust

Estimated from crustal elements:

\[Soil = 2.20 \times Al + 2.49 \times Si + 1.63 \times Ca + 2.42 \times Fe + 1.94 \times Ti\]

If Si data is unavailable:

\[Soil = 2.20 \times Al + 1.63 \times Ca + 2.42 \times Fe + 1.94 \times Ti\]

Multiply by correction factor (~1.89).

Sea Salt (SS)

\[SS = 2.54 \times Na^+\]

Or considering chloride depletion:

\[SS = Na^+ + Cl^- + 0.038 \times Na^+\]

Total Mass Reconstruction

\[PM_{2.5,reconstructed} = AS + AN + OM + EC + Soil + SS\]

Closure Evaluation

\[Closure = \frac{PM_{2.5,reconstructed}}{PM_{2.5,measured}} \times 100\%\]
Closure Assessment
80-120% Good
70-80% or 120-130% Acceptable
<70% or >130% Needs review

Unidentified Mass

\[Unidentified = PM_{2.5,measured} - PM_{2.5,reconstructed}\]

Possible sources: - Bound water - Metal oxides - Analytical errors - Unmeasured components

AeroViz Implementation

from AeroViz.dataProcess import DataProcess
from pathlib import Path

dp = DataProcess('Chemistry', Path('./output'))

# Basic mass reconstruction
result = dp.reconstruction_basic(df_chem)

# Output
result['mass']        # Reconstructed mass DataFrame
#   AS, AN, OM, EC, Soil, SS, PM25_rc

result['NH4_status']  # Ammonium status
#   Excess / Balance / Deficiency

# Full reconstruction (with ite)
result_full = dp.reconstruction_full(df_chem)

Input Format

required_columns = [
    'SO42-', 'NO3-', 'NH4+',      # Ions
    'OC', 'EC',                    # Carbon components
    'Na+', 'Cl-',                  # Sea salt
    'Al', 'Fe', 'Ti', 'Ca',        # Crustal elements
    'PM25'                         # Total mass
]

References

  1. Malm, W. C., et al. (1994). Spatial and monthly trends in speciated fine particle concentration in the United States. JGR, 99(D1), 1347-1370.
  2. Turpin, B. J., & Lim, H. J. (2001). Species contributions to PM2.5 mass concentrations: Revisiting common assumptions for estimating organic mass. Aerosol Sci. Technol., 35(1), 602-610.