Mass Reconstruction
Mass reconstruction reconstructs PM2.5 mass from chemical composition to verify the completeness and closure of chemical analysis.
Major Components
Secondary Inorganic Aerosol (SIA)
Ammonium Sulfate (AS)
\[(NH_4)_2SO_4 = 1.375 \times SO_4^{2-}\]
Ammonium Nitrate (AN)
\[NH_4NO_3 = 1.29 \times NO_3^{-}\]
Ammonium Status Determination
Calculate ion balance:
\[R = \frac{[NH_4^+]}{[SO_4^{2-}]/48 \times 2 + [NO_3^-]/62}\]
| R Value | Status | Description |
|---|---|---|
| >1.1 | Excess | NH4+ excess, possibly NH4Cl present |
| 0.9-1.1 | Balance | Near neutral |
| <0.9 | Deficiency | NH4+ deficient, acidic aerosol |
Organic Matter (OM)
\[OM = OC \times f_{OM/OC}\]
| Environment Type | \(f_{OM/OC}\) | Description |
|---|---|---|
| Urban fresh | 1.4-1.6 | Primary organic matter dominated |
| Suburban aged | 1.6-1.8 | Mixed sources |
| Background | 1.8-2.2 | Secondary organic matter dominated |
Elemental Carbon (EC)
Use measured value directly:
\[EC = EC_{measured}\]
Soil Dust
Estimated from crustal elements:
\[Soil = 2.20 \times Al + 2.49 \times Si + 1.63 \times Ca + 2.42 \times Fe + 1.94 \times Ti\]
If Si data is unavailable:
\[Soil = 2.20 \times Al + 1.63 \times Ca + 2.42 \times Fe + 1.94 \times Ti\]
Multiply by correction factor (~1.89).
Sea Salt (SS)
\[SS = 2.54 \times Na^+\]
Or considering chloride depletion:
\[SS = Na^+ + Cl^- + 0.038 \times Na^+\]
Total Mass Reconstruction
\[PM_{2.5,reconstructed} = AS + AN + OM + EC + Soil + SS\]
Closure Evaluation
\[Closure = \frac{PM_{2.5,reconstructed}}{PM_{2.5,measured}} \times 100\%\]
| Closure | Assessment |
|---|---|
| 80-120% | Good |
| 70-80% or 120-130% | Acceptable |
| <70% or >130% | Needs review |
Unidentified Mass
\[Unidentified = PM_{2.5,measured} - PM_{2.5,reconstructed}\]
Possible sources: - Bound water - Metal oxides - Analytical errors - Unmeasured components
AeroViz Implementation
from AeroViz.dataProcess import DataProcess
from pathlib import Path
dp = DataProcess('Chemistry', Path('./output'))
# Basic mass reconstruction
result = dp.reconstruction_basic(df_chem)
# Output
result['mass'] # Reconstructed mass DataFrame
# AS, AN, OM, EC, Soil, SS, PM25_rc
result['NH4_status'] # Ammonium status
# Excess / Balance / Deficiency
# Full reconstruction (with ite)
result_full = dp.reconstruction_full(df_chem)
Input Format
required_columns = [
'SO42-', 'NO3-', 'NH4+', # Ions
'OC', 'EC', # Carbon components
'Na+', 'Cl-', # Sea salt
'Al', 'Fe', 'Ti', 'Ca', # Crustal elements
'PM25' # Total mass
]
References
- Malm, W. C., et al. (1994). Spatial and monthly trends in speciated fine particle concentration in the United States. JGR, 99(D1), 1347-1370.
- Turpin, B. J., & Lim, H. J. (2001). Species contributions to PM2.5 mass concentrations: Revisiting common assumptions for estimating organic mass. Aerosol Sci. Technol., 35(1), 602-610.