Skip to content

Log-normal Distribution

Aerosol size distributions typically follow log-normal distributions, which is determined by the physical mechanisms of particle formation and growth.

Mathematical Definition

Probability Density Function

\[\frac{dN}{d\ln D_p} = \frac{N_t}{\sqrt{2\pi}\ln\sigma_g} \exp\left[-\frac{(\ln D_p - \ln D_{pg})^2}{2\ln^2\sigma_g}\right]\]

Where: - \(N_t\) = Total number concentration - \(D_{pg}\) = Geometric mean diameter (GMD) - \(\sigma_g\) = Geometric standard deviation (GSD)

Common Representations

Representation Symbol Unit Description
dN \(dN\) #/cm3 Number concentration
dN/dDp \(dN/dD_p\) #/cm3/nm Number per diameter
dN/dlogDp \(dN/d\log D_p\) #/cm3 Number per log diameter

Distribution Conversion

Number to Surface Area

\[\frac{dS}{d\log D_p} = \pi D_p^2 \cdot \frac{dN}{d\log D_p}\]

Number to Volume

\[\frac{dV}{d\log D_p} = \frac{\pi}{6} D_p^3 \cdot \frac{dN}{d\log D_p}\]

Hatch-Choate Conversion

Relationship between GMD of different weightings:

\[\ln D_{pg,S} = \ln D_{pg,N} + 2\ln^2\sigma_g$$ $$\ln D_{pg,V} = \ln D_{pg,N} + 3\ln^2\sigma_g\]

Atmospheric aerosols typically contain multiple modes:

Mode Size Range Primary Sources
Nucleation 1-25 nm Gas-to-particle conversion, new particle formation
Aitken 25-100 nm Growth, combustion emissions
Accumulation 100-1000 nm Aging, cloud processing
Coarse >1000 nm Mechanical processes, sea salt, dust

Statistical Calculations

Geometric Mean Diameter (GMD)

\[D_{pg} = \exp\left(\frac{\sum n_i \ln D_{p,i}}{\sum n_i}\right)\]

Geometric Standard Deviation (GSD)

\[\ln\sigma_g = \sqrt{\frac{\sum n_i (\ln D_{p,i} - \ln D_{pg})^2}{\sum n_i}}\]

Mode Diameter

The diameter corresponding to the distribution peak.

AeroViz Implementation

from AeroViz.dataProcess.SizeDistr import SizeDist

# Create PSD object
psd = SizeDist(df_pnsd, state='dlogdp', weighting='n')

# Distribution conversion
surface = psd.to_surface()  # Surface area distribution
volume = psd.to_volume()    # Volume distribution

# Statistical properties
props = psd.properties()
# props['total_n']  # Total number concentration
# props['GMD_n']    # Geometric mean diameter
# props['GSD_n']    # Geometric standard deviation
# props['mode_n']   # Mode diameter

# Mode statistics
stats = psd.mode_statistics()
# stats['number']     # Number distribution by mode
# stats['surface']    # Surface area distribution by mode
# stats['volume']     # Volume distribution by mode
# stats['statistics'] # GMD, GSD, total for each mode

Multi-modal Fitting

Log-normal mixture model:

\[\frac{dN}{d\log D_p} = \sum_{i=1}^{n} \frac{N_i}{\sqrt{2\pi}\log\sigma_{g,i}} \exp\left[-\frac{(\log D_p - \log D_{pg,i})^2}{2\log^2\sigma_{g,i}}\right]\]

References

  1. Seinfeld, J. H., & Pandis, S. N. (2016). Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Wiley.
  2. Hinds, W. C. (1999). Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. Wiley.