Skip to content

kappa-Kohler Hygroscopicity Theory

kappa-Kohler theory uses a single parameter kappa to describe the hygroscopicity of aerosol particles, simplifying the complexity of traditional Kohler theory.

Basic Principles

Traditional Kohler Equation

\[\ln\left(\frac{RH}{100}\right) = \frac{4 M_w \sigma}{RT \rho_w D_{wet}} - \frac{6 n_s M_w}{\pi \rho_w D_{wet}^3}\]

The competition between the Kelvin effect term and Raoult effect term determines the equilibrium diameter of the particle.

kappa Parameterization

Simplified form proposed by Petters and Kreidenweis (2007):

\[\frac{1}{a_w} = 1 + \kappa \frac{V_s}{V_w}\]

Where: - \(a_w\) = Water activity - \(\kappa\) = Hygroscopicity parameter - \(V_s\) = Dry particle volume - \(V_w\) = Water volume

Physical Meaning of kappa Values

kappa Range Hygroscopicity Typical Components
0 Non-hygroscopic Mineral dust, EC
0.01-0.1 Weakly hygroscopic Organic matter
0.1-0.3 Moderately hygroscopic Mixed aerosol
0.3-0.7 Highly hygroscopic Ammonium sulfate, ammonium nitrate
>0.7 Extremely hygroscopic Sea salt

Component kappa Values

Component kappa Value Source
(NH4)2SO4 0.53 Petters & Kreidenweis (2007)
NH4NO3 0.67 Petters & Kreidenweis (2007)
NaCl 1.28 Petters & Kreidenweis (2007)
H2SO4 0.90 Petters & Kreidenweis (2007)
SOA 0.1 +/- 0.05 Experimental range
POA 0.01 Estimated value
BC 0 Non-hygroscopic

Mixed Aerosol kappa Calculation

For internally mixed particles, use volume weighting:

\[\kappa = \sum_i \epsilon_i \kappa_i\]

Where \(\epsilon_i\) is the volume fraction of component \(i\).

Hygroscopic Growth Factor

Calculate growth factor GF from kappa:

\[GF = \left(\frac{D_{wet}}{D_{dry}}\right) = \left(1 + \kappa \frac{RH/100}{1 - RH/100}\right)^{1/3}\]

AeroViz Implementation

from AeroViz.dataProcess import DataProcess
from pathlib import Path

dp = DataProcess('Chemistry', Path('./output'))

# Calculate kappa and growth factor
result = dp.kappa(df_chem, df_RH)

# Output
result['kappa']  # kappa value time series
result['gRH']    # Growth factor

# Example output
#                     kappa    gRH
# 2024-01-01 00:00    0.35    1.42
# 2024-01-01 01:00    0.38    1.45

Applications

1. Dry PSD Calculation

Convert ambient PSD to dry PSD:

\[D_{dry} = D_{wet} / GF\]

2. Optical Hygroscopic Growth

Estimate f(RH) for IMPROVE equation.

3. CCN Activation

Predict the ability of aerosols to act as cloud condensation nuclei.

References

  1. Petters, M. D., & Kreidenweis, S. M. (2007). A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys., 7(8), 1961-1971.
  2. Kohler, H. (1936). The nucleus in and the growth of hygroscopic droplets. Trans. Faraday Soc., 32, 1152-1161.