kappa-Kohler Hygroscopicity Theory
kappa-Kohler theory uses a single parameter kappa to describe the hygroscopicity of aerosol particles, simplifying the complexity of traditional Kohler theory.
Basic Principles
Traditional Kohler Equation
The competition between the Kelvin effect term and Raoult effect term determines the equilibrium diameter of the particle.
kappa Parameterization
Simplified form proposed by Petters and Kreidenweis (2007):
Where: - \(a_w\) = Water activity - \(\kappa\) = Hygroscopicity parameter - \(V_s\) = Dry particle volume - \(V_w\) = Water volume
Physical Meaning of kappa Values
| kappa Range | Hygroscopicity | Typical Components |
|---|---|---|
| 0 | Non-hygroscopic | Mineral dust, EC |
| 0.01-0.1 | Weakly hygroscopic | Organic matter |
| 0.1-0.3 | Moderately hygroscopic | Mixed aerosol |
| 0.3-0.7 | Highly hygroscopic | Ammonium sulfate, ammonium nitrate |
| >0.7 | Extremely hygroscopic | Sea salt |
Component kappa Values
| Component | kappa Value | Source |
|---|---|---|
| (NH4)2SO4 | 0.53 | Petters & Kreidenweis (2007) |
| NH4NO3 | 0.67 | Petters & Kreidenweis (2007) |
| NaCl | 1.28 | Petters & Kreidenweis (2007) |
| H2SO4 | 0.90 | Petters & Kreidenweis (2007) |
| SOA | 0.1 +/- 0.05 | Experimental range |
| POA | 0.01 | Estimated value |
| BC | 0 | Non-hygroscopic |
Mixed Aerosol kappa Calculation
For internally mixed particles, use volume weighting:
Where \(\epsilon_i\) is the volume fraction of component \(i\).
Hygroscopic Growth Factor
Calculate growth factor GF from kappa:
AeroViz Implementation
from AeroViz.dataProcess import DataProcess
from pathlib import Path
dp = DataProcess('Chemistry', Path('./output'))
# Calculate kappa and growth factor
result = dp.kappa(df_chem, df_RH)
# Output
result['kappa'] # kappa value time series
result['gRH'] # Growth factor
# Example output
# kappa gRH
# 2024-01-01 00:00 0.35 1.42
# 2024-01-01 01:00 0.38 1.45
Applications
1. Dry PSD Calculation
Convert ambient PSD to dry PSD:
2. Optical Hygroscopic Growth
Estimate f(RH) for IMPROVE equation.
3. CCN Activation
Predict the ability of aerosols to act as cloud condensation nuclei.
References
- Petters, M. D., & Kreidenweis, S. M. (2007). A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys., 7(8), 1961-1971.
- Kohler, H. (1936). The nucleus in and the growth of hygroscopic droplets. Trans. Faraday Soc., 32, 1152-1161.