Visualization Tutorial
AeroViz provides rich visualization tools for aerosol data analysis and publication.
Basic Usage
from AeroViz import plot
# Scatter plot
plot.scatter(data, x='BC', y='PM25')
# Time series
plot.time_series(data, 'BC')
Basic Charts
Scatter Plot
from AeroViz.plot import scatter
# Basic scatter plot
scatter(data, x='BC', y='PM25')
# With regression line
scatter(data, x='BC', y='PM25', regression=True)
# Color mapping
scatter(data, x='BC', y='PM25', c='RH', cmap='viridis')
Regression Analysis
from AeroViz.plot import regression
# Linear regression
regression(data, x='BC', y='PM25', method='linear')
# Polynomial regression
regression(data, x='BC', y='PM25', method='polynomial', degree=2)
Box Plot
from AeroViz.plot import box
# Group by category
box(data, x='season', y='BC')
# By month
data['month'] = data.index.month
box(data, x='month', y='PM25')
Bar Chart
from AeroViz.plot import bar
# Component contributions
components = ['AS', 'AN', 'OM', 'EC', 'Soil', 'SS']
bar(data[components].mean(), ylabel='Mass (ug/m3)')
Violin Plot
Pie Chart
from AeroViz.plot import pie
# Component proportions
pie(data[components].mean(), labels=components)
Time Analysis Charts
Time Series
# Single variable
plot.time_series(data, 'BC')
# Multiple variables
plot.time_series(data, ['BC', 'PM25', 'PM10'])
Diurnal Variation
# Single variable diurnal pattern
plot.diurnal(data, 'BC')
# Multiple variable comparison
plot.diurnal(data, ['BC', 'PM25'])
Weekly Variation
Monthly Variation
Advanced Charts
Size Distribution
# Time-size contour plot
plot.size_contour(df_pnsd)
# Average distribution
plot.size_distribution(df_pnsd.mean())
Polar Plots
# Wind rose
plot.wind_rose(data, ws='WS', wd='WD')
# Polar pollutant plot
plot.polar(data, pollutant='BC', ws='WS', wd='WD')
Correlation Matrix
# Correlation heatmap
vars = ['BC', 'PM25', 'PM10', 'NO2', 'O3']
plot.correlation_matrix(data[vars])
Chart Customization
Basic Settings
import matplotlib.pyplot as plt
# Set style
plt.style.use('seaborn-v0_8-paper')
# Custom chart
fig, ax = plt.subplots(figsize=(10, 6))
scatter(data, x='BC', y='PM25', ax=ax)
ax.set_title('BC vs PM2.5')
ax.set_xlabel('BC (ug/m3)')
ax.set_ylabel('PM2.5 (ug/m3)')
Multi-panel Figures
fig, axes = plt.subplots(2, 2, figsize=(12, 10))
scatter(data, 'BC', 'PM25', ax=axes[0,0])
box(data, 'season', 'BC', ax=axes[0,1])
plot.diurnal(data, 'BC', ax=axes[1,0])
plot.monthly(data, 'BC', ax=axes[1,1])
plt.tight_layout()
Saving Figures
# High resolution PNG
plt.savefig('figure.png', dpi=300, bbox_inches='tight')
# Vector formats
plt.savefig('figure.pdf', format='pdf', bbox_inches='tight')
plt.savefig('figure.svg', format='svg', bbox_inches='tight')
Publication Quality Settings
Font Settings
import matplotlib.pyplot as plt
plt.rcParams.update({
'font.family': 'Arial',
'font.size': 12,
'axes.labelsize': 14,
'axes.titlesize': 16,
'xtick.labelsize': 12,
'ytick.labelsize': 12,
'legend.fontsize': 11,
})
Color Settings
# Use colorblind-friendly palette
colors = ['#0077BB', '#EE7733', '#009988', '#CC3311']
# Or use ColorBrewer
from matplotlib.cm import get_cmap
cmap = get_cmap('Set2')
Figure Dimensions
Common journal requirements:
| Journal | Single Column Width | Double Column Width |
|---|---|---|
| ACP | 8.3 cm | 17.6 cm |
| ES&T | 8.5 cm | 17.8 cm |
| JGR | 8.4 cm | 17.4 cm |
# Single column figure
fig, ax = plt.subplots(figsize=(3.27, 2.5)) # 8.3 cm
# Double column figure
fig, ax = plt.subplots(figsize=(6.93, 4)) # 17.6 cm