CBPF
AeroViz.plot.meteorology.CBPF
Attributes
Classes
Color
Unit
Functions
set_figure
set_figure(func=None, *, figsize: tuple | None = None, fs: int | None = None, fw: str = None, autolayout: bool = True)
auto_label_pct
auto_label_pct(pct, symbol: bool = True, include_pct: bool = False, ignore: Literal['inner', 'outer'] = 'inner', value: float = 2)
linear_regression_base
linear_regression_base(x_array: ndarray, y_array: ndarray, columns: str | list[str] | None = None, positive: bool = True, fit_intercept: bool = True)
improve_density_estimation
改進的密度估計函數,使用KDE方法來產生更平滑的分布
Parameters:
df : DataFrame 包含風速風向數據的DataFrame WS : str 風速列名 WD : str 風向列名 val : str 要分析的變量列名 resolution : int 網格解析度 bandwidth : float or tuple KDE的頻寬參數,如果為None則自動選擇
smooth_and_clean
平滑並清理密度圖,去除孤立點
Parameters:
Z : ndarray 密度估計結果 smooth_radius : int 平滑半徑 min_density : float 最小密度閾值
CBPF
CBPF(df: DataFrame, WS: Series | str, WD: Series | str, val: Series | str | None = None, percentile: list | float | int | None = None, max_ws: float | None = 5, resolution: int = 50, sigma: float | tuple = 2, rlabel_pos: float = 30, bottom_text: str | bool | None = None, **kwargs) -> tuple[Figure, Axes]