regression
AeroViz.plot.regression.linear_regression
linear_regression(df: DataFrame, x: str | list[str], y: str | list[str], labels: str | list[str] = None, ax: Axes | None = None, diagonal=False, positive: bool = True, fit_intercept: bool = True, **kwargs) -> tuple[Figure, Axes]
Create a scatter plot with regression lines for the given data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
Input DataFrame containing the data. |
required |
x
|
str or list of str
|
Column name(s) for the x-axis variable(s). If a list, only the first element is used. |
required |
y
|
str or list of str
|
Column name(s) for the y-axis variable(s). |
required |
labels
|
str or list of str
|
Labels for the y-axis variable(s). If None, column names are used as labels. Default is None. |
None
|
ax
|
Axes
|
Matplotlib Axes object to use for the plot. If None, a new subplot is created. Default is None. |
None
|
diagonal
|
bool
|
If True, a diagonal line (1:1 line) is added to the plot. Default is False. |
False
|
positive
|
bool
|
Whether to constrain the regression coefficients to be positive. Default is True. |
True
|
fit_intercept
|
bool
|
Whether to calculate the intercept for this model. Default is True. |
True
|
**kwargs
|
Additional keyword arguments for plot customization. |
{}
|
Returns:
Name | Type | Description |
---|---|---|
fig |
Figure
|
The matplotlib Figure object. |
ax |
Axes
|
The matplotlib Axes object with the scatter plot. |
Notes
- The function creates a scatter plot with optional regression lines.
- The regression line is fitted for each y variable.
- Customization options are provided via **kwargs.
Example
linear_regression(df, x='X', y=['Y1', 'Y2'], labels=['Label1', 'Label2'], ... diagonal=True, xlim=(0, 10), ylim=(0, 20), ... xlabel="X-axis", ylabel="Y-axis", title="Scatter Plot with Regressions")
AeroViz.plot.regression.multiple_linear_regression
multiple_linear_regression(df: DataFrame, x: str | list[str], y: str | list[str], labels: str | list[str] = None, ax: Axes | None = None, diagonal=False, positive: bool = True, fit_intercept: bool = True, **kwargs) -> tuple[Figure, Axes]
Perform multiple linear regression analysis and plot the results.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
Input DataFrame containing the data. |
required |
x
|
str or list of str
|
Column name(s) for the independent variable(s). Can be a single string or a list of strings. |
required |
y
|
str or list of str
|
Column name(s) for the dependent variable(s). Can be a single string or a list of strings. |
required |
labels
|
str or list of str
|
Labels for the dependent variable(s). If None, column names are used as labels. Default is None. |
None
|
ax
|
Axes
|
Matplotlib Axes object to use for the plot. If None, a new subplot is created. Default is None. |
None
|
diagonal
|
bool
|
Whether to include a diagonal line (1:1 line) in the plot. Default is False. |
False
|
positive
|
bool
|
Whether to constrain the regression coefficients to be positive. Default is True. |
True
|
fit_intercept
|
bool
|
Whether to calculate the intercept for this model. Default is True. |
True
|
**kwargs
|
Additional keyword arguments for plot customization. |
{}
|
Returns:
Type | Description |
---|---|
tuple[Figure, Axes]
|
The Figure and Axes containing the regression plot. |
Notes
This function performs multiple linear regression analysis using the input DataFrame. It supports multiple independent variables and can plot the regression results.
Example
multiple_linear_regression(df, x=['X1', 'X2'], y='Y', labels=['Y1', 'Y2'], ... diagonal=True, fit_intercept=True, ... xlabel="X-axis", ylabel="Y-axis", title="Multiple Linear Regression Plot")