Supported Instruments
AeroViz provides comprehensive support for reading and processing data from a wide range of aerosol measurement instruments. Each instrument has a dedicated reader that handles its specific data format, file structure, and measurement characteristics.
Instrument Support
AeroViz automatically detects instrument types based on file format and content structure. You don't need to specify the
instrument type manually when using the RawDataReader factory function.
Instrument Categories
Aethalometers (Black Carbon Measurement)
Instruments for measuring black carbon and light absorption:
- AE33 - Magee Scientific AE33 (7-wavelength aethalometer)
- AE43 - Magee Scientific AE43 (real-time BC measurements)
- BC1054 - MetOne BC1054 (high-resolution absorption)
- MA350 - AethLabs MA350 (multi-angle absorption photometer)
Nephelometers (Light Scattering)
Instruments for measuring aerosol light scattering:
- Aurora - Ecotech Aurora (3-wavelength nephelometer)
- NEPH - TSI Nephelometer (standard scattering measurements)
Particle Sizers
Instruments for measuring particle size distributions:
- SMPS - Scanning Mobility Particle Sizer (10-600 nm)
- APS - Aerodynamic Particle Sizer (0.5-20 μm)
- GRIMM - GRIMM Aerosol Spectrometer (optical sizing)
Chemical Analysis
Instruments for chemical composition analysis:
- IGAC - Ion chromatography (water-soluble ions)
- OCEC - Organic/Elemental Carbon Analyzer
- VOC - Volatile Organic Compounds Monitor
- Xact - Xact 625i XRF Analyzer (elemental analysis)
Mass Concentration
Instruments for PM mass concentration measurement:
Usage Example
from AeroViz.rawDataReader import RawDataReader
# Automatic instrument detection
reader = RawDataReader("instrument_data.txt")
data = reader.read()
# The reader automatically detects the instrument type
print(f"Detected instrument: {reader.instrument_type}")
print(f"Time resolution: {reader.time_resolution}")
Technical Specifications
| Instrument | Time Resolution | File Type | QC Rules |
|---|---|---|---|
| AE33 | 1 min | .dat | Status Error, Invalid BC, Invalid AAE, Insufficient |
| AE43 | 1 min | .dat | Status Error, Invalid BC, Invalid AAE, Insufficient |
| BC1054 | 1 min | .csv | Status Error, Invalid BC, Invalid AAE, Insufficient |
| MA350 | 1 min | .csv | Status Error, Invalid BC, Invalid AAE, Insufficient |
| NEPH | 5 min | .dat | Status Error, No Data, Invalid Scat Value, Invalid Scat Rel, Insufficient |
| Aurora | 1 min | .csv | Status Error, No Data, Invalid Scat Value, Invalid Scat Rel, Insufficient |
| SMPS | 6 min | .txt, .csv | Status Error, Invalid Number Conc, DMA Water, Insufficient |
| APS | 6 min | .txt | Status Error, Invalid Number Conc, Insufficient |
| GRIMM | 6 min | .dat | - |
| TEOM | 6 min | .csv | Status Error, High Noise, Non-positive, NV > Total, Invalid Vol Frac, Spike, Insufficient |
| BAM1020 | 1 h | .csv | Invalid Conc, Spike |
| OCEC | 1 h | *LCRes.csv | Invalid Carbon, Below MDL, Spike, Missing OC |
| IGAC | 1 h | .csv | Mass Closure, Missing Main, Below MDL, Ion Balance |
| Xact | 1 h | .csv | Instrument Error, Upscale Warning, Invalid Value, High Uncertainty |
| VOC | 1 h | .csv | - |
| EPA | 1 h | .csv | Negative Value |
Quality Control System
All instruments use the declarative QCFlagBuilder system:
- Declarative Rules - Each instrument defines QC rules as
QCRuledataclass instances - Consistent Processing - All instruments use
QC_Flaginternally for quality control - Clean Output - Final output has invalid data set to NaN,
QC_Flagcolumn removed
QC Flag Processing
The QC_Flag column is used internally during processing:
"Valid"- All QC rules passed"Rule1, Rule2"- Comma-separated list of failed rule names
Output Files:
| File | QC_Flag | Description |
|---|---|---|
_read_{inst}_raw.pkl/csv |
❌ No | Raw data before QC |
_read_{inst}_qc.pkl/csv |
✅ Yes | QC'd data with flag |
output_{inst}.csv |
❌ No | Final output (invalid → NaN) |
Adding New Instruments
To add support for a new instrument, you need to:
- Create a new reader class inheriting from
AbstractReader - Implement the required methods for data parsing
- Add instrument detection logic
- Include appropriate quality control methods
Example Reader Implementation
from AeroViz.rawDataReader.core.AbstractReader import AbstractReader
class MyInstrumentReader(AbstractReader):
def __init__(self, file_path, **kwargs):
super().__init__(file_path, **kwargs)
def read_data(self):
# Implement your data reading logic
pass
def apply_qc(self):
# Implement quality control
pass
Related Documentation
- AbstractReader - Base class for all instrument readers
- Quality Control - Data validation and filtering methods
- RawDataReader - Factory function for automatic instrument detection