Quality Control
QualityControl API
AeroViz.rawDataReader.core.qc.QualityControl
A class providing various methods for data quality control and outlier detection
Source code in AeroViz/rawDataReader/core/qc.py
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
|
iqr(df, log_dist=False)
classmethod
Detect outliers using Interquartile Range (IQR) method
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
Input data |
required |
log_dist
|
bool
|
Whether to apply log transformation to data |
False
|
Returns:
Type | Description |
---|---|
DataFrame
|
Cleaned DataFrame with outliers masked as NaN |
Source code in AeroViz/rawDataReader/core/qc.py
mad_iqr_hybrid(df, mad_threshold=3.5, log_dist=False)
classmethod
Detect outliers using a hybrid of MAD and IQR methods
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
Input data |
required |
mad_threshold
|
float
|
Threshold for MAD method |
3.5
|
log_dist
|
bool
|
Whether to apply log transformation to data |
False
|
Returns:
Type | Description |
---|---|
DataFrame
|
Cleaned DataFrame with outliers masked as NaN |
Source code in AeroViz/rawDataReader/core/qc.py
n_sigma(df, std_range=5)
classmethod
Detect outliers using n-sigma method
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
Input data |
required |
std_range
|
int
|
Number of standard deviations to use as threshold |
5
|
Returns:
Type | Description |
---|---|
DataFrame
|
Cleaned DataFrame with outliers masked as NaN |
Source code in AeroViz/rawDataReader/core/qc.py
rolling_iqr(df, window_size=24, log_dist=False)
classmethod
Detect outliers using rolling window IQR method
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
Input data |
required |
window_size
|
int
|
Size of the rolling window |
24
|
log_dist
|
bool
|
Whether to apply log transformation to data |
False
|
Returns:
Type | Description |
---|---|
DataFrame
|
Cleaned DataFrame with outliers masked as NaN |
Source code in AeroViz/rawDataReader/core/qc.py
time_aware_iqr(df, time_window='1D', log_dist=False)
classmethod
Detect outliers using time-aware IQR method
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
Input data |
required |
time_window
|
str
|
Time window size (e.g., '1D' for one day) |
'1D'
|
log_dist
|
bool
|
Whether to apply log transformation to data |
False
|
Returns:
Type | Description |
---|---|
DataFrame
|
Cleaned DataFrame with outliers masked as NaN |